Upper airway gene expression is an effective surrogate biomarker for Th2-driven inflammation in the lower airway

Molecular profiling studies in asthma cohorts have identified a Th2-driven asthma subtype, characterized by elevated lower airway expression of POSTN, CLCA1 and SERPINB2. To assess upper airway gene expression as a potential biomarker for lower airway Th2 inflammation, we assayed upper airway (nasal) and lower airway (bronchial) epithelial gene expression, serum total IgE, blood eosinophils and serum periostin in a cohort of 54 allergic asthmatics and 30 matched healthy controls. 23 of 51 asthmatics in our cohort were classified as ‘Th2 high’ based on lower airway Th2 gene signature expression. Consistent with this classification, ‘Th2 high’ subjects displayed elevated total IgE and blood eosinophil levels relative to ‘Th2 low’ subjects. Upper airway Th2 signature expression was significantly correlated with lower airway Th2 signature expression (r=0.44), with similar strength of association as serum total IgE and blood eosinophils, known biomarkers of Th2 inflammation. In an unbiased genome-wide scan, we identified 8 upper airway genes more strongly correlated with lower airway Th2 gene signature expression (r=0.58), including Eotaxin-3 (CCL26), Galectin-10 (CLC) and Cathepsin-C (CTSC). Asthmatics classified as ‘Th2 high’ using this 8-gene signature show similar serum total IgE and blood eosinophil levels as ‘Th2 high’ asthmatics classified using lower airway Th2 gene signature expression. We have identified an 8-gene upper airway signature correlated with lower airway Th2 inflammation, which may be used as a diagnostic biomarker for Th2-driven asthma.

keywords: NCBI GEO expression profiling by array